Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Masaki Ishii
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (12): 2851–2863.
Published: 01 December 2001
Abstract
View article
PDF
In this article, we present a technique to improve the generalization ability of multilayer neural networks. The proposed method introduces linear constraints on weight representation based on the invariance natures of training targets. We propose a learning method that introduces effective linear constraints into an error function as a penalty term. Furthermore, introduction of such constraints leads to reduction of the VC dimension of neural networks. We show bounds on the VC dimension of the neural networks with such constraints. Finally, we demonstrate the effectiveness of the proposed method by some experiments.