Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Masanari Kimura
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (9): 1944–1977.
Published: 16 August 2022
FIGURES
Abstract
View article
PDF
Many machine learning methods assume that the training and test data follow the same distribution. However, in the real world, this assumption is often violated. In particular, the marginal distribution of the data changes, called covariate shift, is one of the most important research topics in machine learning. We show that the well-known family of covariate shift adaptation methods is unified in the framework of information geometry. Furthermore, we show that parameter search for a geometrically generalized covariate shift adaptation method can be achieved efficiently. Numerical experiments show that our generalization can achieve better performance than the existing methods it encompasses.