Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Mathieu N. Galtier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (11): 2815–2832.
Published: 01 November 2013
FIGURES
| View All (10)
Abstract
View article
PDF
Identifying, formalizing, and combining biological mechanisms that implement known brain functions, such as prediction, is a main aspect of research in theoretical neuroscience. In this letter, the mechanisms of spike-timing-dependent plasticity and homeostatic plasticity, combined in an original mathematical formalism, are shown to shape recurrent neural networks into predictors. Following a rigorous mathematical treatment, we prove that they implement the online gradient descent of a distance between the network activity and its stimuli. The convergence to an equilibrium, where the network can spontaneously reproduce or predict its stimuli, does not suffer from bifurcation issues usually encountered in learning in recurrent neural networks.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (9): 2346–2383.
Published: 01 September 2012
FIGURES
| View All (43)
Abstract
View article
PDF
We show how a Hopfield network with modifiable recurrent connections undergoing slow Hebbian learning can extract the underlying geometry of an input space. First, we use a slow and fast analysis to derive an averaged system whose dynamics derives from an energy function and therefore always converges to equilibrium points. The equilibria reflect the correlation structure of the inputs, a global object extracted through local recurrent interactions only. Second, we use numerical methods to illustrate how learning extracts the hidden geometrical structure of the inputs. Indeed, multidimensional scaling methods make it possible to project the final connectivity matrix onto a Euclidean distance matrix in a high-dimensional space, with the neurons labeled by spatial position within this space. The resulting network structure turns out to be roughly convolutional. The residual of the projection defines the nonconvolutional part of the connectivity, which is minimized in the process. Finally, we show how restricting the dimension of the space where the neurons live gives rise to patterns similar to cortical maps. We motivate this using an energy efficiency argument based on wire length minimization. Finally, we show how this approach leads to the emergence of ocular dominance or orientation columns in primary visual cortex via the self-organization of recurrent rather than feedforward connections. In addition, we establish that the nonconvolutional (or long-range) connectivity is patchy and is co-aligned in the case of orientation learning.