Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Matthew A. Wilson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (7): 1356–1387.
Published: 01 July 2016
FIGURES
| View All (64)
Abstract
View article
PDF
Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron’s spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat’s trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history–independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat’s trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model’s performance remains invariant to the apparent modality of the neuron’s receptive field.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (1): 1–39.
Published: 01 January 2014
FIGURES
| View All (20)
Abstract
View article
PDF
Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation. Although it has been long suggested that pyramidal cell activity may underlie a topological code rather than a topographic code, it remains unclear whether an abstract spatial topology can be encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach developed previously, we investigate this question and related issues in greater detail. We recorded ensembles of hippocampal neurons as rodents freely foraged in one- and two-dimensional spatial environments and used a “decode-to-uncover” strategy to examine the temporally structured patterns embedded in the ensemble spiking activity in the absence of observed spatial correlates during periods of rodent navigation or awake immobility. Specifically, the spatial environment was represented by a finite discrete state space. Trajectories across spatial locations (“states”) were associated with consistent hippocampal ensemble spiking patterns, which were characterized by a state transition matrix. From this state transition matrix, we inferred a topology graph that defined the connectivity in the state space. In both one- and two-dimensional environments, the extracted behavior patterns from the rodent hippocampal population codes were compared against randomly shuffled spike data. In contrast to a topographic code, our results support the efficiency of topological coding in the presence of sparse sample size and fuzzy space mapping. This computational approach allows us to quantify the variability of ensemble spiking activity, examine hippocampal population codes during off-line states, and quantify the topological complexity of the environment.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (11): 2731–2745.
Published: 01 November 2011
FIGURES
Abstract
View article
PDF
Characterizing neural spiking activity as a function of intrinsic and extrinsic factors is important in neuroscience. Point process models are valuable for capturing such information; however, the process of fully applying these models is not always obvious. A complete model application has four broad steps: specification of the model, estimation of model parameters given observed data, verification of the model using goodness of fit, and characterization of the model using confidence bounds. Of these steps, only the first three have been applied widely in the literature, suggesting the need to dedicate a discussion to how the time-rescaling theorem, in combination with parametric bootstrap sampling, can be generally used to compute confidence bounds of point process models. In our first example, we use a generalized linear model of spiking propensity to demonstrate that confidence bounds derived from bootstrap simulations are consistent with those computed from closed-form analytic solutions. In our second example, we consider an adaptive point process model of hippocampal place field plasticity for which no analytical confidence bounds can be derived. We demonstrate how to simulate bootstrap samples from adaptive point process models, how to use these samples to generate confidence bounds, and how to statistically test the hypothesis that neural representations at two time points are significantly different. These examples have been designed as useful guides for performing scientific inference based on point process models.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (7): 1797–1862.
Published: 01 July 2009
FIGURES
| View All (16)
Abstract
View article
PDF
UP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state dynamics is important for understanding how these circuits represent and transmit information in the brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN state dynamics. We present a set of Markov and semi-Markov discrete- and continuous-time probability models for estimating UP and DOWN states from multiunit neural spiking activity. We model multiunit neural spiking activity as a stochastic point process, modulated by the hidden (UP and DOWN) states and the ensemble spiking history. We estimate jointly the hidden states and the model parameters by maximum likelihood using an expectation-maximization (EM) algorithm and a Monte Carlo EM algorithm that uses reversible-jump Markov chain Monte Carlo sampling in the E-step. We apply our models and algorithms in the analysis of both simulated multiunit spiking activity and actual multi- unit spiking activity recorded from primary somatosensory cortex in a behaving rat during slow-wave sleep. Our approach provides a statistical characterization of UP-DOWN state dynamics that can serve as a basis for verifying and refining mechanistic descriptions of this process.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (9): 1927–1961.
Published: 01 September 2005
Abstract
View article
PDF
Analyzing the dependencies between spike trains is an important step in understanding how neurons work in concert to represent biological signals. Usually this is done for pairs of neurons at a time using correlation-based techniques. Chornoboy, Schramm, and Karr (1988) proposed maximum likelihood methods for the simultaneous analysis of multiple pair-wise interactions among an ensemble of neurons. One of these methods is an iterative, continuous-time estimation algorithm for a network likelihood model formulated in terms of multiplicative conditional intensity functions. We devised a discrete-time version of this algorithm that includes a new, efficient computational strategy, a principled method to compute starting values, and a principled stopping criterion. In an analysis of simulated neural spike trains from ensembles of interacting neurons, the algorithm recovered the correct connectivity matrices and interaction parameters. In the analysis of spike trains from an ensemble of rat hippocampal place cells, the algorithm identified a connectivity matrix and interaction parameters consistent with the pattern of conjoined firing predicted by the overlap of the neurons' spatial receptive fields. These results suggest that the network likelihood model can be an efficient tool for the analysis of ensemble spiking activity.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (2): 277–307.
Published: 01 February 2004
Abstract
View article
PDF
Neural spike train decoding algorithms and techniques to compute Shan-non mutual information are important methods for analyzing how neural systems represent biological signals. Decoding algorithms are also one of several strategies being used to design controls for brain-machine inter-faces. Developing optimal strategies to desig n decoding algorithms and compute mutual information are therefore important problems in com-putational neuroscience. We present a general recursive filter decoding algorithm based on a point process model of individual neuron spiking activity and a linear stochastic state-space model of the biological signal. We derive from the algorithm new instantaneous estimates of the en-tropy, entropy rate, and the mutual information between the signal and the ensemble spiking activity. We assess the accuracy of the algorithm by computing, along with the decoding error, the true coverage probabil-ity of the approximate 0.95 confidence regions for the individual signal estimates. We illustrate the new algorithm by reanalyzing the position and ensemble neural spiking activity of CA1 hippocampal neurons from two rats foraging in an open circular environment. We compare the per-formance of this algorithm with a linear filter constructed by the widely used reverse correlation method. The median decoding error for Animal 1 (2) during 10 minutes of open foraging was 5.9 (5.5) cm, the median entropy was 6.9 (7.0) bits, the median information was 9.4 (9.4) bits, and the true coverage probability for 0.95 confidence regions was 0.67 (0.75) using 34 (32) neurons. These findings improve significantly on our pre-vious results and suggest an integrated approach to dynamically reading neural codes, measuring their properties, and quantifying the accuracy with which encoded information is extracted.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1991) 3 (4): 498–509.
Published: 01 December 1991
Abstract
View article
PDF
Periodic variations in correlated cellular activity have been observed in many regions of the cerebral cortex. The recent discovery of stimulus-dependent, spatially-coherent oscillations in primary visual cortex of the cat has led to suggestions of neural information encoding schemes based on phase and/or frequency variation. To explore the mechanisms underlying this behavior and their possible functional consequences, we have developed a realistic neural model, based on structural features of visual cortex, which replicates observed oscillatory phenomena. In the model, this oscillatory behavior emerges directly from the structure of the cortical network and the properties of its intrinsic neurons; however, phase coherence is shown to be an average phenomenon seen only when measurements are made over multiple trials. Because average coherence does not ensure synchrony of firing over the course of single stimuli, oscillatory phase may not be a robust strategy for directly encoding stimulus-specific information. Instead, the phase and frequency of cortical oscillations may reflect the coordination of general computational processes within and between cortical areas. Under this interpretation, coherence emerges as a result of horizontal interactions that could be involved in the formation of receptive field properties.