Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Matthew G. Parker
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (6): 1681–1695.
Published: 01 June 2017
FIGURES
| View All (21)
Abstract
View article
PDF
Clique-based neural associative memories introduced by Gripon and Berrou (GB), have been shown to have good performance, and in our previous work we improved the learning capacity and retrieval rate by local coding and precoding in the presence of partial erasures. We now take a step forward and consider nested-clique graph structures for the network. The GB model stores patterns as small cliques, and we here replace these by nested cliques. Simulation results show that the nested-clique structure enhances the clique-based model.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (8): 1553–1573.
Published: 01 August 2016
FIGURES
| View All (32)
Abstract
View article
PDF
Techniques from coding theory are able to improve the efficiency of neuroinspired and neural associative memories by forcing some construction and constraints on the network. In this letter, the approach is to embed coding techniques into neural associative memory in order to increase their performance in the presence of partial erasures. The motivation comes from recent work by Gripon, Berrou, and coauthors, which revisited Willshaw networks and presented a neural network with interacting neurons that partitioned into clusters. The model introduced stores patterns as small-size cliques that can be retrieved in spite of partial error. We focus on improving the success of retrieval by applying two techniques: doing a local coding in each cluster and then applying a precoding step. We use a slightly different decoding scheme, which is appropriate for partial erasures and converges faster. Although the ideas of local coding and precoding are not new, the way we apply them is different. Simulations show an increase in the pattern retrieval capacity for both techniques. Moreover, we use self-dual additive codes over field , which have very interesting properties and a simple-graph representation.