Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Matthias Bethge
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (11): 2809–2814.
Published: 01 November 2013
Abstract
View article
PDF
Divisive normalization has been proposed as a nonlinear redundancy reduction mechanism capturing contrast correlations. Its basic function is a radial rescaling of the population response. Because of the saturation of divisive normalization, however, it is impossible to achieve a fully independent representation. In this letter, we derive an analytical upper bound on the inevitable residual redundancy of any saturating radial rescaling mechanism.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (2): 397–423.
Published: 01 February 2009
FIGURES
| View All (6)
Abstract
View article
PDF
Spike trains recorded from populations of neurons can exhibit substantial pairwise correlations between neurons and rich temporal structure. Thus, for the realistic simulation and analysis of neural systems, it is essential to have efficient methods for generating artificial spike trains with specified correlation structure. Here we show how correlated binary spike trains can be simulated by means of a latent multivariate gaussian model. Sampling from the model is computationally very efficient and, in particular, feasible even for large populations of neurons. The entropy of the model is close to the theoretical maximum for a wide range of parameters. In addition, this framework naturally extends to correlations over time and offers an elegant way to model correlated neural spike counts with arbitrary marginal distributions.