Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Matthias S. Keil
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (4): 871–903.
Published: 01 April 2006
Abstract
View article
PDF
Recent evidence suggests that the primate visual system generates representations for object surfaces (where we consider representations for the surface attribute brightness). Object recognition can be expected to perform robustly if those representations are invariant despite environmental changes (e.g., in illumination). In real-world scenes, it happens, however, that surfaces are often overlaid by luminance gradients, which we define as smooth variations in intensity. Luminance gradients encode highly variable information, which may represent surface properties (curvature), nonsurface properties (e.g., specular highlights, cast shadows, illumination inhomogeneities), or information about depth relationships (cast shadows, blur). We argue, on grounds of the unpredictable nature of luminance gradients, that the visual system should establish corresponding representations, in addition to surface representations. We accordingly present a neuronal architecture, the so-called gradient system, which clarifies how spatially accurate gradient representations can be obtained by relying on only high-resolution retinal responses. Although the gradient system was designed and optimized for segregating, and generating, representations of luminance gradients with real-world luminance images, it is capable of quantitatively predicting psychophysical data on both Mach bands and Chevreul's illusion. It furthermore accounts qualitatively for a modified Ehrenstein disk.