Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Michael Rule
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (10): 2757–2780.
Published: 01 October 2018
Abstract
View article
PDF
Modeling and interpreting spike train data is a task of central importance in computational neuroscience, with significant translational implications. Two popular classes of data-driven models for this task are autoregressive point-process generalized linear models (PPGLM) and latent state-space models (SSM) with point-process observations. In this letter, we derive a mathematical connection between these two classes of models. By introducing an auxiliary history process, we represent exactly a PPGLM in terms of a latent, infinite-dimensional dynamical system, which can then be mapped onto an SSM by basis function projections and moment closure. This representation provides a new perspective on widely used methods for modeling spike data and also suggests novel algorithmic approaches to fitting such models. We illustrate our results on a phasic bursting neuron model, showing that our proposed approach provides an accurate and efficient way to capture neural dynamics.