Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Michele Giugliano
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (4): 811–830.
Published: 01 April 2003
Abstract
View article
PDF
We present a new technique, based on a proposed event-based strategy (Mattia & Del Giudice, 2000), for efficiently simulating large networks of simple model neurons. The strategy was based on the fact that interactions among neurons occur by means of events that are well localized in time (the action potentials) and relatively rare. In the interval between two of these events, the state variables associated with a model neuron or a synapse evolved deterministically and in a predictable way. Here, we extend the event-driven simulation strategy to the case in which the dynamics of the state variables in the inter-event intervals are stochastic. This extension captures both the situation in which the simulated neurons are inherently noisy and the case in which they are embedded in a very large network and receive a huge number of random synaptic inputs. We show how to effectively include the impact of large background populations into neuronal dynamics by means of the numerical evaluation of the statistical properties of single-model neurons under random current injection. The new simulation strategy allows the study of networks of interacting neurons with an arbitrary number of external afferents and inherent stochastic dynamics.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (4): 903–931.
Published: 01 April 2000
Abstract
View article
PDF
Markov kinetic models constitute a powerful framework to analyze patch-clamp data from single-channel recordings and model the dynamics of ion conductances and synaptic transmission between neurons. In particular, the accurate simulation of a large number of synaptic inputs in wide-scale network models may result in a computationally highly demanding process. We present a generalized consolidating algorithm to simulate efficiently a large number of synaptic inputs of the same kind (excitatory or inhibitory), converging on an isopotential compartment, independently modeling each synaptic current by a generic n -state Markov model characterized by piece-wise constant transition probabilities. We extend our findings to a class of simplified phenomenological descriptions of synaptic transmission that incorporate higher-order dynamics, such as short-term facilitation, depression, and synaptic plasticity.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (6): 1413–1426.
Published: 15 August 1999
Abstract
View article
PDF
An efficient implementation of synaptic transmission models in realistic network simulations is an important theme of computational neuro-science. The amount of CPU time required to simulate synaptic interactions can increase as the square of the number of units of such networks, depending on the connectivity convergence. As a consequence, any realistic description of synaptic phenomena, incorporating biophysical details, is computationally highly demanding. We present a consolidating algorithm based on a biophysical extended model of ligand-gated postsynaptic channels, describing short-term plasticity such as synaptic depression. The considerable speedup of simulation times makes this algorithm suitable for investigating emergent collective effects of short-term depression in large-scale networks of model neurons.