Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Michele Piana
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (5): 1063–1076.
Published: 01 May 2004
Abstract
View article
PDF
In this letter, we investigate the impact of choosing different loss functions from the viewpoint of statistical learning theory. We introduce a convexity assumption, which is met by all loss functions commonly used in the literature, and study how the bound on the estimation error changes with the loss. We also derive a general result on the minimizer of the expected risk for a convex loss function in the case of classification. The main outcome of our analysis is that for classification, the hinge loss appears to be the loss of choice. Other things being equal, the hinge loss leads to a convergence rate practically indistinguishable from the logistic loss rate and much better than the square loss rate. Furthermore, if the hypothesis space is sufficiently rich, the bounds obtained for the hinge loss are not loosened by the thresholding stage.