Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Michele Rucci
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (3): 569–590.
Published: 01 March 2006
Abstract
View article
PDF
Under natural viewing conditions, the physiological instability of visual fixation keeps the projection of the stimulus on the retina in constant motion. After eye opening, chronic exposure to a constantly moving retinal image might influence the experience-dependent refinement of cell response characteristics. The results of previous modeling studies have suggested a contribution of fixational instability to the Hebbian maturation of the receptive fields of V1 simple cells (Rucci, Edelman, & Wray, 2000; Rucci & Casile, 2004). This letter examines the origins of such a contribution. Using quasilinear models of lateral geniculate nucleus units and V1 simple cells, we derive analytical expressions for the second- order statistics of thalamocortical activity before and after eye opening. We show that in the presence of natural stimulation, fixational instability introduces a spatially uncorrelated signal in the retinal input, which strongly influences the structure of correlated activity in the model. This input signal produces a regime of thalamocortical activity similar to that present before eye opening and compatible with the Hebbian maturation of cortical receptive fields.