Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Michiel D'Haene
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (6): 1055–1079.
Published: 01 June 2014
FIGURES
Abstract
View article
PDF
In the field of neural network simulation techniques, the common conception is that spiking neural network simulators can be divided in two categories: time-step-based and event-driven methods. In this letter, we look at state-of-the art simulation techniques in both categories and show that a clear distinction between both methods is increasingly difficult to define. In an attempt to improve the weak points of each simulation method, ideas of the alternative method are, sometimes unknowingly, incorporated in the simulation engine. Clearly the ideal simulation method is a mix of both methods. We formulate the key properties of such an efficient and generally applicable hybrid approach.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (6): 1468–1472.
Published: 01 June 2010
Abstract
View article
PDF
Recently van Elburg and van Ooyen ( 2009 ) published a generalization of the event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory currents and double exponential inhibitory synaptic currents, introduced by Carnevale and Hines. In the paper, it was shown that the constraints on the synaptic time constants imposed by the Newton-Raphson iteration scheme, can be relaxed. In this note, we show that according to the results published in D'Haene, Schrauwen, Van Campenhout, and Stroobandt ( 2009 ), a further generalization is possible, eliminating any constraint on the time constants. We also demonstrate that in fact, a wide range of linear neuron models can be efficiently simulated with this computation scheme, including neuron models mimicking complex neuronal behavior. These results can change the way complex neuronal spiking behavior is modeled: instead of highly nonlinear neuron models with few state variables, it is possible to efficiently simulate linear models with a large number of state variables.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (4): 1068–1099.
Published: 01 April 2009
FIGURES
| View All (6)
Abstract
View article
PDF
The simulation of spiking neural networks (SNNs) is known to be a very time-consuming task. This limits the size of SNN that can be simulated in reasonable time or forces users to overly limit the complexity of the neuron models. This is one of the driving forces behind much of the recent research on event-driven simulation strategies. Although event-driven simulation allows precise and efficient simulation of certain spiking neuron models, it is not straightforward to generalize the technique to more complex neuron models, mostly because the firing time of these neuron models is computationally expensive to evaluate. Most solutions proposed in literature concentrate on algorithms that can solve this problem efficiently. However, these solutions do not scale well when more state variables are involved in the neuron model, which is, for example, the case when multiple synaptic time constants for each neuron are used. In this letter, we show that an exact prediction of the firing time is not required in order to guarantee exact simulation results. Several techniques are presented that try to do the least possible amount of work to predict the firing times. We propose an elegant algorithm for the simulation of leaky integrate-and-fire (LIF) neurons with an arbitrary number of (unconstrained) synaptic time constants, which is able to combine these algorithmic techniques efficiently, resulting in very high simulation speed. Moreover, our algorithm is highly independent of the complexity (i.e., number of synaptic time constants) of the underlying neuron model.