Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Miguel Á. Carreira-Perpiñán
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (7): 1545–1560.
Published: 01 July 2002
Abstract
View article
PDF
The elegant regularity of maps of variables such as ocular dominance, orientation, and spatial frequency in primary visual cortex has prompted many people to suggest that their structure could be explained by an optimization principle. Up to now, the standard way to test this hypothesis has been to generate artificial maps by optimizing a hypothesized objective function and then to compare these artificial maps with real maps using a variety of quantitative criteria. If the artificial maps are similar to the real maps, this provides some evidence that the real cortex may be optimizing a similar function to the one hypothesized. Recently, a more direct method has been proposed for testing whether real maps represent local optima of an objective function (Swindale, Shoham, Grinvald, Bonhoeffer, & Hübener, 2000). In this approach, the value of the hypothesized function is calculated for a real map, and then the real map is perturbed in certain ways and the function recalculated. If each of these perturbations leads to a worsening of the function, it is tempting to conclude that the real map is quite likely to represent a local optimum of that function. In this article, we argue that such perturbation results provide only weak evidence in favor of the optimization hypothesis.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (1): 141–152.
Published: 01 January 2000
Abstract
View article
PDF
The class of finite mixtures of multivariate Bernoulli distributions is known to be nonidentifiable; that is, different values of the mixture parameters can correspond to exactly the same probability distribution. In principle, this would mean that sample estimates using this model would give rise to different interpretations. We give empirical support to the fact that estimation of this class of mixtures can still produce meaningful results in practice, thus lessening the importance of the identifiability problem. We also show that the expectation-maximization algorithm is guaranteed to converge to a proper maximum likelihood estimate, owing to a property of the log-likelihood surface. Experiments with synthetic data sets show that an original generating distribution can be estimated from a sample. Experiments with an electropalatography data set show important structure in the data.