Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Mira Guise
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (9): 2052–2073.
Published: 01 September 2014
FIGURES
| View All (11)
Abstract
View article
PDF
A significant feature of spiking neural networks with varying connection delays, such as those in the brain, is the existence of strongly connected groups of neurons known as polychronous neural groups (PNGs). Polychronous groups are found in large numbers in these networks and are proposed by Izhikevich ( 2006a ) to provide a neural basis for representation and memory. When exposed to a familiar stimulus, spiking neural networks produce consistencies in the spiking output data that are the hallmarks of PNG activation. Previous methods for studying the PNG activation response to stimuli have been limited by the template-based methods used to identify PNG activation. In this letter, we outline a new method that overcomes these difficulties by establishing for the first time a probabilistic interpretation of PNG activation. We then demonstrate the use of this method by investigating the claim that PNGs might provide the foundation of a representational system.