Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Miriam Aquaro
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation 1–33.
Published: 02 December 2024
Abstract
View article
PDF
Hebbian learning theory is rooted in Pavlov’s classical conditioning While mathematical models of the former have been proposed and studied in the past decades, especially in spin glass theory, only recently has it been numerically shown that it is possible to write neural and synaptic dynamics that mirror Pavlov conditioning mechanisms and also give rise to synaptic weights that correspond to the Hebbian learning rule. In this letter we show that the same dynamics can be derived with equilibrium statistical mechanics tools and basic and motivated modeling assumptions. Then we show how to study the resulting system of coupled stochastic differential equations assuming the reasonable separation of neural and synaptic timescale. In particular, we analytically demonstrate that this synaptic evolution converges to the Hebbian learning rule in various settings and compute the variance of the stochastic process. Finally, drawing from evidence on pure memory reinforcement during sleep stages, we show how the proposed model can simulate neural networks that undergo sleep-associated memory consolidation processes, thereby proving the compatibility of Pavlovian learning with dreaming mechanisms.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (5): 930–957.
Published: 18 April 2023
Abstract
View article
PDF
Hebb's learning traces its origin in Pavlov's classical conditioning; however, while the former has been extensively modeled in the past decades (e.g., by the Hopfield model and countless variations on theme), as for the latter, modeling has remained largely unaddressed so far. Furthermore, a mathematical bridge connecting these two pillars is totally lacking. The main difficulty toward this goal lies in the intrinsically different scales of the information involved: Pavlov's theory is about correlations between concepts that are (dynamically) stored in the synaptic matrix as exemplified by the celebrated experiment starring a dog and a ringing bell; conversely, Hebb's theory is about correlations between pairs of neurons as summarized by the famous statement that neurons that fire together wire together . In this letter, we rely on stochastic process theory to prove that as long as we keep neurons' and synapses' timescales largely split, Pavlov's mechanism spontaneously takes place and ultimately gives rise to synaptic weights that recover the Hebbian kernel.