Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Muneki Yasuda
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (4): 1037–1062.
Published: 26 March 2021
Abstract
View article
PDF
Spatial Monte Carlo integration (SMCI) is an extension of standard Monte Carlo integration and can approximate expectations on Markov random fields with high accuracy. SMCI was applied to pairwise Boltzmann machine (PBM) learning, achieving superior results over those of some existing methods. The approximation level of SMCI can be altered, and it was proved that a higher-order approximation of SMCI is statistically more accurate than a lower-order approximation. However, SMCI as proposed in previous studies suffers from a limitation that prevents the application of a higher-order method to dense systems. This study makes two contributions. First, a generalization of SMCI (called generalized SMCI (GSMCI)) is proposed, which allows a relaxation of the above-mentioned limitation; moreover, a statistical accuracy bound of GSMCI is proved. Second, a new PBM learning method based on SMCI is proposed, which is obtained by combining SMCI and persistent contrastive divergence. The proposed learning method significantly improves learning accuracy.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (11): 3130–3178.
Published: 01 November 2009
FIGURES
| View All (14)
Abstract
View article
PDF
Boltzmann machines can be regarded as Markov random fields. For binary cases, they are equivalent to the Ising spin model in statistical mechanics. Learning systems in Boltzmann machines are one of the NP-hard problems. Thus, in general we have to use approximate methods to construct practical learning algorithms in this context. In this letter, we propose new and practical learning algorithms for Boltzmann machines by using the belief propagation algorithm and the linear response approximation, which are often referred as advanced mean field methods. Finally, we show the validity of our algorithm using numerical experiments.