Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
N. Alex Cayco-Gajic
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (7): 1768–1806.
Published: 01 July 2013
FIGURES
| View All (81)
Abstract
View article
PDF
Recent experimental and computational evidence suggests that several dynamical properties may characterize the operating point of functioning neural networks: critical branching, neutral stability, and production of a wide range of firing patterns. We seek the simplest setting in which these properties emerge, clarifying their origin and relationship in random, feedforward networks of McCullochs-Pitts neurons. Two key parameters are the thresholds at which neurons fire spikes and the overall level of feedforward connectivity. When neurons have low thresholds, we show that there is always a connectivity for which the properties in question all occur, that is, these networks preserve overall firing rates from layer to layer and produce broad distributions of activity in each layer. This fails to occur, however, when neurons have high thresholds. A key tool in explaining this difference is the eigenstructure of the resulting mean-field Markov chain, as this reveals which activity modes will be preserved from layer to layer. We extend our analysis from purely excitatory networks to more complex models that include inhibition and local noise, and find that both of these features extend the parameter ranges over which networks produce the properties of interest.