Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
N. Intrator
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (7): 1621–1640.
Published: 01 July 2003
Abstract
View article
PDF
We study the selectivity properties of neurons based on BCM and kurtosis energy functions in a general case of noisy high-dimensional input space. The proposed approach, which is used for characterization of the stable states, can be generalized to a whole class of energy functions. We characterize the critical noise levels beyond which the selectivity is destroyed. We also perform a quantitative analysis of such transitions, which shows interesting dependency on data set size. We observe that the robustness to noise of the BCM neuron (Bienenstock, Cooper, & Munro, 1982; Intrator & Cooper, 1992) increases as a function of dimensionality. We explicitly compute the separability limit of BCM and kurtosis learning rules in the case of a bimodal input distribution. Numerical simulations show a stronger robustness of the BCM rule for practical data set size when compared with kurtosis.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (7): 1797–1813.
Published: 01 October 1998
Abstract
View article
PDF
We study several statistically and biologically motivated learning rules using the same visual environment: one made up of natural scenes and the same single-cell neuronal architecture. This allows us to concentrate on the feature extraction and neuronal coding properties of these rules. Included in these rules are kurtosis and skewness maximization, the quadratic form of the Bienenstock-Cooper-Munro (BCM) learning rule, and single-cell independent component analysis. Using a structure removal method, we demonstrate that receptive fields developed using these rules depend on a small portion of the distribution. We find that the quadratic form of the BCM rule behaves in a manner similar to a kurtosis maximization rule when the distribution contains kurtotic directions, although the BCM modification equations are computationally simpler.