Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
N. Sundararajan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (5): 1297–1328.
Published: 01 May 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Recent studies on human learning reveal that self-regulated learning in a metacognitive framework is the best strategy for efficient learning. As the machine learning algorithms are inspired by the principles of human learning, one needs to incorporate the concept of metacognition to develop efficient machine learning algorithms. In this letter we present a metacognitive learning framework that controls the learning process of a fully complex-valued radial basis function network and is referred to as a metacognitive fully complex-valued radial basis function (Mc-FCRBF) network. Mc-FCRBF has two components: a cognitive component containing the FC-RBF network and a metacognitive component, which regulates the learning process of FC-RBF. In every epoch, when a sample is presented to Mc-FCRBF, the metacognitive component decides what to learn, when to learn, and how to learn based on the knowledge acquired by the FC-RBF network and the new information contained in the sample. The Mc-FCRBF learning algorithm is described in detail, and both its approximation and classification abilities are evaluated using a set of benchmark and practical problems. Performance results indicate the superior approximation and classification performance of Mc-FCRBF compared to existing methods in the literature.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (2): 461–478.
Published: 15 February 1997
Abstract
View article
PDF
This article presents a sequential learning algorithm for function approximation and time-series prediction using a minimal radial basis function neural network (RBFNN). The algorithm combines the growth criterion of the resource-allocating network (RAN) of Platt (1991) with a pruning strategy based on the relative contribution of each hidden unit to the overall network output. The resulting network leads toward a minimal topology for the RBFNN. The performance of the algorithm is compared with RAN and the enhanced RAN algorithm of Kadirkamanathan and Niranjan (1993) for the following benchmark problems: (1) hearta from the benchmark problems database PROBEN1, (2) Hermite polynomial, and (3) Mackey-Glass chaotic time series. For these problems, the proposed algorithm is shown to realize RBFNNs with far fewer hidden neurons with better or same accuracy.