Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Nando de Freitas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (8): 2151–2184.
Published: 01 August 2012
FIGURES
| View All (22)
Abstract
View article
PDF
We discuss an attentional model for simultaneous object tracking and recognition that is driven by gaze data. Motivated by theories of perception, the model consists of two interacting pathways, identity and control, intended to mirror the what and where pathways in neuroscience models. The identity pathway models object appearance and performs classification using deep (factored)-restricted Boltzmann machines. At each point in time, the observations consist of foveated images, with decaying resolution toward the periphery of the gaze. The control pathway models the location, orientation, scale, and speed of the attended object. The posterior distribution of these states is estimated with particle filtering. Deeper in the control pathway, we encounter an attentional mechanism that learns to select gazes so as to minimize tracking uncertainty. Unlike in our previous work, we introduce gaze selection strategies that operate in the presence of partial information and on a continuous action space. We show that a straightforward extension of the existing approach to the partial information setting results in poor performance, and we propose an alternative method based on modeling the reward surface as a gaussian process. This approach gives good performance in the presence of partial information and allows us to expand the action space from a small, discrete set of fixation points to a continuous domain.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (10): 2359–2407.
Published: 01 October 2001
Abstract
View article
PDF
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to perform the Bayesian computation. We find that the results obtained using this method are not only better than the ones reported previously, but also appear to be robust with respect to the prior specification. In addition, we propose a novel and computationally efficient reversible-jump MCMC simulated annealing algorithm to optimize neural networks. This algorithm enables us to maximize the joint posterior distribution of the network parameters and the number of basis function. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima to a large extent. We show that by calibrating the full hierarchical Bayesian prior, we can obtain the classical Akaike information criterion, Bayesian information criterion, and minimum description length model selection criteria within a penalized likelihood framework. Finally, we present a geometric convergence theorem for the algorithm with homogeneous transition kernel and a convergence theorem for the reversible-jump MCMC simulated annealing method.