Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Neil Berman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (1): 227–248.
Published: 01 January 2001
Abstract
View article
PDF
The influence of voltage-dependent inhibitory conductances on firing rate versus input current (f-I) curves is studied using simulations from a new compartmental model of a pyramidal cell of the weakly electric fish Apteronotus leptorhynchus . The voltage dependence of shunting-type inhibition enhances the subtractive effect of inhibition on f-I curves previously demonstrated in Holt and Koch (1997) for the voltage-independent case. This increased effectiveness is explained using the behavior of the average subthreshold voltage with input current and, in particular, the nonlinearity of Ohm's law in the subthreshold regime. Our simulations also reveal, for both voltage-dependent and -independent inhibitory conductances, a divisive inhibition regime at low frequencies (f < 40 Hz). This regime, dependent on stochastic inhibitory synaptic input and a coupling of inhibitory strength and variance, gives way to subtractive inhibition at higher-output frequencies (f > 40 Hz). A simple leaky integrate- and-fire type model that incorporates the voltage dependence supports the results from our full ionic simulations.