Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Nicola Ancona
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (4): 749–759.
Published: 01 April 2006
Abstract
View article
PDF
We consider kernel-based learning methods for regression and analyze what happens to the risk minimizer when new variables, statistically independent of input and target variables, are added to the set of input variables. This problem arises, for example, in the detection of causality relations between two time series. We find that the risk minimizer remains unchanged if we constrain the risk minimization to hypothesis spaces induced by suitable kernel functions. We show that not all kernel-induced hypothesis spaces enjoy this property. We present sufficient conditions ensuring that the risk minimizer does not change and show that they hold for inhomogeneous polynomial and gaussian radial basis function kernels. We also provide examples of kernel-induced hypothesis spaces whose risk minimizer changes if independent variables are added as input.