Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Niko Wilbert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (9): 2289–2323.
Published: 01 September 2011
FIGURES
| View All (6)
Abstract
View article
PDF
Primates are very good at recognizing objects independent of viewing angle or retinal position, and they outperform existing computer vision systems by far. But invariant object recognition is only one prerequisite for successful interaction with the environment. An animal also needs to assess an object's position and relative rotational angle. We propose here a model that is able to extract object identity, position, and rotation angles. We demonstrate the model behavior on complex three-dimensional objects under translation and rotation in depth on a homogeneous background. A similar model has previously been shown to extract hippocampal spatial codes from quasi-natural videos. The framework for mathematical analysis of this earlier application carries over to the scenario of invariant object recognition. Thus, the simulation results can be explained analytically even for the complex high-dimensional data we employed.