Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Olivier Marre
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (2): 233–269.
Published: 01 February 2019
Abstract
View article
PDF
The principles of neural encoding and computations are inherently collective and usually involve large populations of interacting neurons with highly correlated activities. While theories of neural function have long recognized the importance of collective effects in populations of neurons, only in the past two decades has it become possible to record from many cells simultaneously using advanced experimental techniques with single-spike resolution and to relate these correlations to function and behavior. This review focuses on the modeling and inference approaches that have been recently developed to describe the correlated spiking activity of populations of neurons. We cover a variety of models describing correlations between pairs of neurons, as well as between larger groups, synchronous or delayed in time, with or without the explicit influence of the stimulus, and including or not latent variables. We discuss the advantages and drawbacks or each method, as well as the computational challenges related to their application to recordings of ever larger populations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (11): 3009–3036.
Published: 01 November 2018
FIGURES
| View All (8)
Abstract
View article
PDF
Neural noise sets a limit to information transmission in sensory systems. In several areas, the spiking response (to a repeated stimulus) has shown a higher degree of regularity than predicted by a Poisson process. However, a simple model to explain this low variability is still lacking. Here we introduce a new model, with a correction to Poisson statistics, that can accurately predict the regularity of neural spike trains in response to a repeated stimulus. The model has only two parameters but can reproduce the observed variability in retinal recordings in various conditions. We show analytically why this approximation can work. In a model of the spike-emitting process where a refractory period is assumed, we derive that our simple correction can well approximate the spike train statistics over a broad range of firing rates. Our model can be easily plugged to stimulus processing models, like a linear-nonlinear model or its generalizations, to replace the Poisson spike train hypothesis that is commonly assumed. It estimates the amount of information transmitted much more accurately than Poisson models in retinal recordings. Thanks to its simplicity, this model has the potential to explain low variability in other areas.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (3): 561–593.
Published: 01 March 2015
FIGURES
| View All (24)
Abstract
View article
PDF
This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time—pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30–60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (7): 1661–1692.
Published: 01 July 2013
FIGURES
| View All (13)
Abstract
View article
PDF
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory–based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.