Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
P. S. Sastry
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (4): 1025–1059.
Published: 01 April 2010
FIGURES
| View All (7)
Abstract
View article
PDF
We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (11): 2729–2750.
Published: 01 November 2002
Abstract
View article
PDF
Alopex is a correlation-based gradient-free optimization technique useful in many learning problems. However, there are no analytical results on the asymptotic behavior of this algorithm. This article presents a new version of Alopex that can be analyzed using techniques of two timescale stochastic approximation method. It is shown that the algorithm asymptotically behaves like a gradient-descent method, though it does not need (or estimate) any gradient information. It is also shown, through simulations, that the algorithm is quite effective.