Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Pascal Fries
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (8): 1555–1608.
Published: 01 August 2015
FIGURES
| View All (37)
Abstract
View article
PDF
In neuroscience, data are typically generated from neural network activity. The resulting time series represent measurements from spatially distributed subsystems with complex interactions, weakly coupled to a high-dimensional global system. We present a statistical framework to estimate the direction of information flow and its delay in measurements from systems of this type. Informed by differential topology, gaussian process regression is employed to reconstruct measurements of putative driving systems from measurements of the driven systems. These reconstructions serve to estimate the delay of the interaction by means of an analytical criterion developed for this purpose. The model accounts for a range of possible sources of uncertainty, including temporally evolving intrinsic noise, while assuming complex nonlinear dependencies. Furthermore, we show that if information flow is delayed, this approach also allows for inference in strong coupling scenarios of systems exhibiting synchronization phenomena. The validity of the method is demonstrated with a variety of delay-coupled chaotic oscillators. In addition, we show that these results seamlessly transfer to local field potentials in cat visual cortex.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (9): 2256–2281.
Published: 01 September 2006
Abstract
View article
PDF
The purpose of this study was to obtain a better understanding of neuronal responses to correlated input, in particular focusing on the aspect of synchronization of neuronal activity. The first aim was to obtain an analytical expression for the coherence between the output spike train and correlated input and for the coherence between output spike trains of neurons with correlated input. For Poisson neurons, we could derive that the peak of the coherence between the correlated input and multi-unit activity increases proportionally with the square root of the number of neurons in the multi-unit recording. The coherence between two typical multi-unit recordings (2 to 10 single units) with partially correlated input increases proportionally with the number of units in the multi-unit recordings. The second aim of this study was to investigate to what extent the amplitude and signal-to-noise ratio of the coherence between input and output varied for single-unit versus multi-unit activity and how they are affected by the duration of the recording. The same problem was addressed for the coherence between two single-unit spike series and between two multi-unit spike series. The analytical results for the Poisson neuron and numerical simulations for the conductance-based leaky integrate-and-fire neuron and for the conductance-based Hodgkin-Huxley neuron show that the expectation value of the coherence function does not increase for a longer duration of the recording. The only effect of a longer duration of the spike recording is a reduction of the noise in the coherence function. The results of analytical derivations and computer simulations for model neurons show that the coherence for multi-unit activity is larger than that for single-unit activity. This is in agreement with the results of experimental data obtained from monkey visual cortex (V4). Finally, we show that multitaper techniques greatly contribute to a more accurate estimate of the coherence by reducing the bias and variance in the coherence estimate.