Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Pascal Helson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (7): 1322–1354.
Published: 01 July 2020
FIGURES
Abstract
View articletitled, A Mathematical Analysis of Memory Lifetime in a Simple Network Model of Memory
View
PDF
for article titled, A Mathematical Analysis of Memory Lifetime in a Simple Network Model of Memory
We study the learning of an external signal by a neural network and the time to forget it when this network is submitted to noise. The presentation of an external stimulus to the recurrent network of binary neurons may change the state of the synapses. Multiple presentations of a unique signal lead to its learning. Then, during the forgetting time, the presentation of other signals (noise) may also modify the synaptic weights. We construct an estimator of the initial signal using the synaptic currents and in this way define a probability of error. In our model, these synaptic currents evolve as Markov chains. We study the dynamics of these Markov chains and obtain a lower bound on the number of external stimuli that the network can receive before the initial signal is considered forgotten (probability of error above a given threshold). Our results are based on a finite-time analysis rather than large-time asymptotic. We finally present numerical illustrations of our results.