Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Paul C. Bressloff
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (9): 2346–2383.
Published: 01 September 2012
FIGURES
| View All (43)
Abstract
View article
PDF
We show how a Hopfield network with modifiable recurrent connections undergoing slow Hebbian learning can extract the underlying geometry of an input space. First, we use a slow and fast analysis to derive an averaged system whose dynamics derives from an energy function and therefore always converges to equilibrium points. The equilibria reflect the correlation structure of the inputs, a global object extracted through local recurrent interactions only. Second, we use numerical methods to illustrate how learning extracts the hidden geometrical structure of the inputs. Indeed, multidimensional scaling methods make it possible to project the final connectivity matrix onto a Euclidean distance matrix in a high-dimensional space, with the neurons labeled by spatial position within this space. The resulting network structure turns out to be roughly convolutional. The residual of the projection defines the nonconvolutional part of the connectivity, which is minimized in the process. Finally, we show how restricting the dimension of the space where the neurons live gives rise to patterns similar to cortical maps. We motivate this using an energy efficiency argument based on wire length minimization. Finally, we show how this approach leads to the emergence of ocular dominance or orientation columns in primary visual cortex via the self-organization of recurrent rather than feedforward connections. In addition, we establish that the nonconvolutional (or long-range) connectivity is patchy and is co-aligned in the case of orientation learning.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (3): 493–525.
Published: 01 March 2002
Abstract
View article
PDF
A mathematical theory of interacting hypercolumns in primary visual cortex (V1) is presented that incorporates details concerning the anisotropic nature of long-range lateral connections. Each hypercolumn is modeled as a ring of interacting excitatory and inhibitory neural populations with orientation preferences over the range 0 to 180 degrees. Analytical methods from bifurcation theory are used to derive nonlinear equations for the amplitude and phase of the population tuning curves in which the effective lateral interactions are linear in the amplitudes. These amplitude equations describe how mutual interactions between hypercolumns via lateral connections modify the response of each hypercolumn to modulated inputs from the lateral geniculate nucleus; such interactions form the basis of contextual effects. The coupled ring model is shown to reproduce a number of orientation-dependent and contrast-dependent features observed in center-surround experiments. A major prediction of the model is that the anisotropy in lateral connections results in a nonuniform modulatory effect of the surround that is correlated with the orientation of the center.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (3): 473–491.
Published: 01 March 2002
Abstract
View article
PDF
Many observers see geometric visual hallucinations after taking hallucinogens such as LSD, cannabis, mescaline or psilocybin; on viewing bright flickering lights; on waking up or falling asleep; in “near-death” experiences; and in many other syndromes. Klüver organized the images into four groups called form constants : (I) tunnels and funnels, (II) spirals, (III) lattices, including honeycombs and triangles, and (IV) cobwebs. In most cases, the images are seen in both eyes and move with them. We interpret this to mean that they are generated in the brain. Here, we summarize a theory of their origin in visual cortex (area V1), based on the assumption that the form of the retino–cortical map and the architecture of V1 determine their geometry. (A much longer and more detailed mathematical version has been published in Philosophical Transactions of the Royal Society B, 356 [2001].) We model V1 as the continuum limit of a lattice of interconnected hypercolumns, each comprising a number of interconnected iso-orientation columns. Based on anatomical evidence, we assume that the lateral connectivity between hypercolumns exhibits symmetries, rendering it invariant under the action of the Euclidean group E(2), composed of reflections and translations in the plane, and a (novel) shift-twist action. Using this symmetry, we show that the various patterns of activity that spontaneously emerge when V1's spatially uniform resting state becomes unstable correspond to the form constants when transformed to the visual field using the retino-cortical map. The results are sensitive to the detailed specification of the lateral connectivity and suggest that the cortical mechanisms that generate geometric visual hallucinations are closely related to those used to process edges, contours, surfaces, and textures.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (5): 1067–1093.
Published: 01 May 2000
Abstract
View article
PDF
We present a tractable stochastic phase model of the temperature sensitivity of a mammalian cold receptor. Using simple linear dependencies of the amplitude, frequency, and bias on temperature, the model reproduces the experimentally observed transitions between bursting, beating, and stochastically phase-locked firing patterns. We analyze the model in the deterministic limit and predict, using a Strutt map, the number of spikes per burst for a given temperature. The inclusion of noise produces a variable number of spikes per burst and also extends the dynamic range of the neuron, both of which are analyzed in terms of the Strutt map. Our analysis can be readily applied to other receptors that display various bursting patterns following temperature changes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (1): 91–129.
Published: 01 January 2000
Abstract
View article
PDF
We present a dynamical theory of integrate-and-fire neurons with strong synaptic coupling. We show how phase-locked states that are stable in the weak coupling regime can destabilize as the coupling is increased, leading to states characterized by spatiotemporal variations in the interspike intervals (ISIs). The dynamics is compared with that of a corresponding network of analog neurons in which the outputs of the neurons are taken to be mean firing rates. A fundamental result is that for slow interactions, there is good agreement between the two models (on an appropriately defined timescale). Various examples of desynchronization in the strong coupling regime are presented. First, a globally coupled network of identical neurons with strong inhibitory coupling is shown to exhibit oscillator death in which some of the neurons suppress the activity of others. However, the stability of the synchronous state persists for very large networks and fast synapses. Second, an asymmetric network with a mixture of excitation and inhibition is shown to exhibit periodic bursting patterns. Finally, a one-dimensional network of neurons with long-range interactions is shown to desynchronize to a state with a spatially periodic pattern of mean firing rates across the network. This is modulated by deterministic fluctuations of the instantaneous firing rate whose size is an increasing function of the speed of synaptic response.