Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Paul Mineiro
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (7): 1507–1544.
Published: 01 July 2002
Abstract
View article
PDF
We present a Monte Carlo approach for training partially observable diffusion processes. We apply the approach to diffusion networks, a stochastic version of continuous recurrent neural networks. The approach is aimed at learning probability distributions of continuous paths, not just expected values. Interestingly, the relevant activation statistics used by the learning rule presented here are inner products in the Hilbert space of square integrable functions. These inner products can be computed using Hebbian operations and do not require backpropagation of error signals. Moreover, standard kernel methods could potentially be applied to compute such inner products. We propose that the main reason that recurrent neural networks have not worked well in engineering applications (e.g., speech recognition) is that they implicitly rely on a very simplistic likelihood model. The diffusion network approach proposed here is much richer and may open new avenues for applications of recurrent neural networks. We present some analysis and simulations to support this view. Very encouraging results were obtained on a visual speech recognition task in which neural networks outperformed hidden Markov models.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (2): 353–371.
Published: 15 February 1998
Abstract
View article
PDF
The relative contributions of feedforward and recurrent connectivity to the direction-selective responses of cells in layer IVB of primary visual cortex are currently the subject of debate in the neuroscience community. Recently, biophysically detailed simulations have shown that realistic direction-selective responses can be achieved via recurrent cortical interactions between cells with nondirection-selective feedforward input (Suarez et al., 1995; Maex & Orban, 1996). Unfortunately these models, while desirable for detailed comparison with biology, are complex and thus difficult to analyze mathematically. In this article, a relatively simple cortical dynamical model is used to analyze the emergence of direction-selective responses via recurrent interactions. A comparison between a model based on our analysis and physiological data is presented. The approach also allows analysis of the recurrently propagated signal, revealing the predictive nature of the implementation.