Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Paul R. Schrater
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (10): 2511–2536.
Published: 01 October 2011
FIGURES
| View All (8)
Abstract
View articletitled, An Optimal Feedback Control Framework for Grasping Objects with Position Uncertainty
View
PDF
for article titled, An Optimal Feedback Control Framework for Grasping Objects with Position Uncertainty
As we move, the relative location between our hands and objects changes in uncertain ways due to noisy motor commands and imprecise and ambiguous sensory information. The impressive capabilities humans display for interacting and manipulating objects with position uncertainty suggest that our brain maintains representations of location uncertainty and builds compensation for uncertainty into its motor control strategies. Our previous work demonstrated that specific control strategies are used to compensate for location uncertainty. However, it is an open question whether compensation for position uncertainty in grasping is consistent with the stochastic optimal feedback control, mainly due to the difficulty of modeling natural tasks within this framework. In this study, we develop a stochastic optimal feedback control model to evaluate the optimality of human grasping strategies. We investigate the properties of the model through a series of simulation experiments and show that it explains key aspects of previously observed compensation strategies. It also provides a basis for individual differences in terms of differential control costs—the controller compensates only to the extent that performance benefits in terms of making stable grasps outweigh the additional control costs of compensation. These results suggest that stochastic optimal feedback control can be used to understand uncertainty compensation in complex natural tasks like grasping.