Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Paul Sajda
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (6): 901–921.
Published: 01 November 1992
Abstract
View article
PDF
We present a model of how objects can be visually discriminated based on the extraction of depth-from-occlusion. Object discrimination requires consideration of both the binding problem and the problem of segmentation. We propose that the visual system binds contours and surfaces by identifying “proto-objects”—compact regions bounded by contours. Proto-objects can then be linked into larger structures. The model is simulated by a system of interconnected neural networks. The networks have biologically motivated architectures and utilize a distributed representation of depth. We present simulations that demonstrate three robust psychophysical properties of the system. The networks are able to stratify multiple occluding objects in a complex scene into separate depth planes. They bind the contours and surfaces of occluded objects (for example, if a tree branch partially occludes the moon, the two "half-moons" are bound into a single object). Finally, the model accounts for human perceptions of illusory contour stimuli.