Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Peter J. Edwards
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (4): 987–1005.
Published: 15 May 1998
Abstract
View article
PDF
This article introduces the concept of optimally distributed computation in feedforward neural networks via regularization of weight saliency. By constraining the relative importance of the parameters, computation can be distributed thinly and evenly throughout the network. We propose that this will have beneficial effects on fault-tolerance performance and generalization ability in large network architectures. These theoretical predictions are verified by simulation experiments on two problems: one artificial and the other a real-world task. In summary, this article presents regularization terms for distributing neural computation optimally.