Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Pierre Orban
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (4): 990–1020.
Published: 01 April 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Mixture of autoregressions (MoAR) models provide a model-based approach to the clustering of time series data. The maximum likelihood (ML) estimation of MoAR models requires evaluating products of large numbers of densities of normal random variables. In practical scenarios, these products converge to zero as the length of the time series increases, and thus the ML estimation of MoAR models becomes infeasible without the use of numerical tricks. We propose a maximum pseudolikelihood (MPL) estimation approach as an alternative to the use of numerical tricks. The MPL estimator is proved to be consistent and can be computed with an EM (expectation-maximization) algorithm. Simulations are used to assess the performance of the MPL estimator against that of the ML estimator in cases where the latter was able to be calculated. An application to the clustering of time series data arising from a resting state fMRI experiment is presented as a demonstration of the methodology.