Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Pietro Mazzoni
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (2): 397–427.
Published: 01 February 2018
FIGURES
| View All (10)
Abstract
View article
PDF
It has been debated whether kinematic features, such as the number of peaks or decomposed submovements in a velocity profile, indicate the number of discrete motor impulses or result from a continuous control process. The debate is particularly relevant for tasks involving target perturbation, which can alter movement kinematics. To simulate such tasks, finite-horizon models require two preset movement durations to compute two control policies before and after the perturbation. Another model employs infinite- and finite-horizon formulations to determine, respectively, movement durations and control policies, which are updated every time step. We adopted an infinite-horizon optimal feedback control model that, unlike previous approaches, does not preset movement durations or use multiple control policies. It contains both control-dependent and independent noises in system dynamics, state-dependent and independent noises in sensory feedbacks, and different delays and noise levels for visual and proprioceptive feedbacks. We analytically derived an optimal solution that can be applied continuously to move an effector toward a target regardless of whether, when, or where the target jumps. This single policy produces different numbers of peaks and “submovements” in velocity profiles for different conditions and trials. Movements that are slower or perturbed later appear to have more submovements. The model is also consistent with the observation that subjects can perform the perturbation task even without detecting the target jump or seeing their hands during reaching. Finally, because the model incorporates Weber's law via a state representation relative to the target, it explains why initial and terminal visual feedback are, respectively, less and more effective in improving end-point accuracy. Our work suggests that the number of peaks or submovements in a velocity profile does not necessarily reflect the number of motor impulses and that the difference between initial and terminal feedback does not necessarily imply a transition between open- and closed-loop strategies.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (3): 697–724.
Published: 01 March 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Optimization models explain many aspects of biological goal-directed movements. However, most such models use a finite-horizon formulation, which requires a prefixed movement duration to define a cost function and solve the optimization problem. To predict movement duration, these models have to be run multiple times with different prefixed durations until an appropriate duration is found by trial and error. The constrained minimum time model directly predicts movement duration; however, it does not consider sensory feedback and is thus applicable only to open-loop movements. To address these problems, we analyzed and simulated an infinite-horizon optimal feedback control model, with linear plants, that contains both control-dependent and control-independent noise and optimizes steady-state accuracy and energetic costs per unit time. The model applies the steady-state estimator and controller continuously to guide an effector to, and keep it at, target position. As such, it integrates movement control and posture maintenance without artificially dividing them with a precise, prefixed time boundary. Movement pace is determined by the model parameters, and the duration is an emergent property with trial-to-trial variability. By considering the mean duration, we derived both the log and power forms of Fitts's law as different approximations of the model. Moreover, the model reproduces typically observed velocity profiles and occasional transient overshoots. For unbiased sensory feedback, the effector reaches the target without bias, in contrast to finite-horizon models that systematically undershoot target when energetic cost is considered. Finally, the model does not involve backward and forward sweeps in time, its stability is easily checked, and the same solution applies to movements of different initial conditions and distances. We argue that biological systems could use steady-state solutions as default control mechanisms and might seek additional optimization of transient costs when justified or demanded by task or context.