Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Priscilla E. Greenwood
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (1): 74–103.
Published: 01 January 2015
FIGURES
| View All (49)
Abstract
View article
PDF
In this letter, we provide a stochastic analysis of, and supporting simulation data for, a stochastic model of the generation of gamma bursts in local field potential (LFP) recordings by interacting populations of excitatory and inhibitory neurons. Our interest is in behavior near a fixed point of the stochastic dynamics of the model. We apply a recent limit theorem of stochastic dynamics to probe into details of this local behavior, obtaining several new results. We show that the stochastic model can be written in terms of a rotation multiplied by a two-dimensional standard Ornstein-Uhlenbeck (OU) process. Viewing the rewritten process in terms of phase and amplitude processes, we are able to proceed further in analysis. We demonstrate that gamma bursts arise in the model as excursions of the modulus of the OU process. The associated pair of stochastic phase and amplitude processes satisfies their own pair of stochastic differential equations, which indicates that large phase slips occur between gamma bursts. This behavior is mirrored in LFP data simulated from the original model. These results suggest that the rewritten model is a valid representation of the behavior near the fixed point for a wide class of models of oscillatory neural processes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (12): 3094–3124.
Published: 01 December 2011
FIGURES
| View All (18)
Abstract
View article
PDF
Using the Morris-Lecar model neuron with a type II parameter set and K + -channel noise, we investigate the interspike interval distribution as increasing levels of applied current drive the model through a subcritical Hopf bifurcation. Our goal is to provide a quantitative description of the distributions associated with spiking as a function of applied current. The model generates bursty spiking behavior with sequences of random numbers of spikes (bursts) separated by interburst intervals of random length. This kind of spiking behavior is found in many places in the nervous system, most notably, perhaps, in stuttering inhibitory interneurons in cortex. Here we show several practical and inviting aspects of this model, combining analysis of the stochastic dynamics of the model with estimation based on simulations. We show that the parameter of the exponential tail of the interspike interval distribution is in fact continuous over the entire range of plausible applied current, regardless of the bifurcations in the phase portrait of the model. Further, we show that the spike sequence length, apparently studied for the first time here, has a geometric distribution whose associated parameter is continuous as a function of applied current over the entire input range. Hence, this model is applicable over a much wider range of applied current than has been thought.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (7): 1743–1767.
Published: 01 July 2011
FIGURES
Abstract
View article
PDF
Neural membrane potential data are necessarily conditional on observation being prior to a firing time. In a stochastic leaky integrate-and-fire model, this corresponds to conditioning the process on not crossing a boundary. In the literature, simulation and estimation have almost always been done using unconditioned processes. In this letter, we determine the stochastic differential equations of a diffusion process conditioned to stay below a level S up to a fixed time t 1 and of a diffusion process conditioned to cross the boundary for the first time at t 1 . This allows simulation of sample paths and identification of the corresponding mean process. Differences between the mean of free and conditioned processes are illustrated, as well as the role of noise in increasing these differences.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (10): 2240–2257.
Published: 01 October 2005
Abstract
View article
PDF
We study optimal estimation of a signal in parametric neuronal models on the basis of interspike interval data. Fisher information is the inverse asymptotic variance of the best estimator. Its dependence on the parameter value indicates accuracy of estimation. Our models assume that the input signal is estimated from neuronal output interspike interval data where the frequency transfer function is sigmoidal. If the coefficient of variation of the interspike interval is constant with respect to the signal, the Fisher information is unimodal, and its maximum for the most estimable signal can be found. We obtain a general result and compare the signal producing maximal Fisher information with the inflection point of the sigmoidal transfer function in several basic neuronal models.