Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Radim Lněnička
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (2): 583–617.
Published: 01 February 2009
FIGURES
| View All (10)
Abstract
View article
PDF
The important task of generating the minimum number of sequential triangle strips (tristrips) for a given triangulated surface model is motivated by applications in computer graphics. This hard combinatorial optimization problem is reduced to the minimum energy problem in Hopfield nets by a linear-size construction. In particular, the classes of equivalent optimal stripifications are mapped one to one to the minimum energy states reached by a Hopfield network during sequential computation starting at the zero initial state. Thus, the underlying Hopfield network powered by simulated annealing (i.e., Boltzmann machine), which is implemented in the program HTGEN, can be used for computing the semioptimal stripifications. Practical experiments confirm that one can obtain much better results using HTGEN than by a leading conventional stripification program FTSG (a reference stripification method not based on neural nets), although the running time of simulated annealing grows rapidly near the global optimum. Nevertheless, HTGEN exhibits empirical linear time complexity when the parameters of simulated annealing (i.e., the initial temperature and the stopping criterion) are fixed and thus provides the semioptimal offline solutions, even for huge models of hundreds of thousands of triangles, within a reasonable time.