Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Ramesh R. Sarukkai
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (3): 637–648.
Published: 01 March 1997
Abstract
View article
PDF
Supervised, neural network, learning algorithms have proved very successful at solving a variety of learning problems; however, they suffer from a common problem of requiring explicit output labels. In this article, it is shown that pattern classification can be achieved, in a multilayered, feedforward, neural network, without requiring explicit output labels, by a process of supervised self-organization. The class projection is achieved by optimizing appropriate within-class uniformity and between-class discernibility criteria. The mapping function and the class labels are developed together iteratively using the derived self organizing backpropagation algorithm. The ability of the self-organizing network to generalize on unseen data is also experimentally evaluated on real data sets and compares favorably with the traditional labeled supervision with neural networks. In addition, interesting features emerge out of the proposed self-organizing supervision, which are absent in conventional approaches.