Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Reza Moazzezi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (12): 3036–3061.
Published: 01 December 2010
FIGURES
| View All (20)
Abstract
View article
PDF
One standard interpretation of networks of cortical neurons is that they form dynamical attractors. Computations such as stimulus estimation are performed by mapping inputs to points on the networks' attractive manifolds. These points represent population codes for the stimulus values. However, this standard interpretation is hard to reconcile with the observation that the firing rates of such neurons constantly change following presentation of stimuli. We have recently suggested an alternative interpretation according to which computations are realized by systematic changes in the states of such networks over time. This way of performing computations is fast, accurate, readily learnable, and robust to various forms of noise. Here we analyze the computation of stimulus discrimination in this change-based setting, relating it directly to the computation of stimulus estimation in the conventional attractor-based view. We use a common linear approximation to compare the two methods and show that perfect performance at estimation implies chance performance at discrimination.