Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Richard Turner
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (4): 1022–1038.
Published: 01 April 2007
Abstract
View article
PDF
The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as a heuristic by which to extract semantic information from multidimensional time series. Here, we develop a probabilistic interpretation of this algorithm, showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual springboard with which to motivate several novel extensions to the algorithm.