Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Rishikesh Narayanan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (1): 75–96.
Published: 01 January 2005
Abstract
View article
PDF
Dendritic arborization is an important determinant of single-neuron function as well as the circuitry among neurons. Dendritic trees undergo remodeling during development, aging, and many pathological conditions, with many of the morphological changes being confined to certain regions of the dendritic tree. In order to analyze the functional consequences of such region-specific dendritic remodeling, it is essential to develop techniques that can systematically manipulate three-dimensional reconstructions of neurons. Hence, in this study, we develop an algorithm that uses statistics from precise morphometric analyses to systematically remodel neuronal reconstructions. We use the distribution function of the ratio of two normal distributed random variables to specify the probabilities of remodeling along various regions of the dendritic arborization. We then use these probabilities to drive an iterative algorithm for manipulating the dendritic tree in a region-specific manner. As a test, we apply this framework to a well-characterized example of dendritic remodeling: stress-induced dendritic atrophy in hippocampal CA3 pyramidal cells. We show that our pruning algorithm is capable of eliciting atrophy that matches biological data from rodent models of chronic stress.