Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Robert Gütig
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (1): 121–153.
Published: 01 January 2002
Abstract
View articletitled, Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics
View
PDF
for article titled, Statistical Significance of Coincident Spikes: Count-Based Versus Rate-Based Statistics
Inspired by different conceptualizations of temporal neural coding schemes, there has been recent interest in the search for signs of precisely synchronized neural activity in the cortex. One method developed for this task is unitary-event analysis. This method tests multiple single-neuron recordings for short epochs with significantly more coincident spikes than expected from independent neurons. We reformulated the statistical test underlying this method using a coincidence count distribution based on empirical spike counts rather than on estimated spike probabilities. In the case of two neurons, the requirement of stationary firing rates, originally imposed on both neurons, can be relaxed; only the rate of one neuron needs to be stationary, while the other may follow an arbitrary time course. By analytical calculations of the test power curves of the original and the revised method, we demonstrate that the test power can be increased by a factor of two or more in physiologically realistic regimes. In addition, we analyze the effective significance levels of both methods for neural firing rates ranging between 0.2 Hz and 30 Hz.