Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Roberto C. Sotero
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (4): 969–997.
Published: 01 April 2010
FIGURES
| View All (12)
Abstract
View article
PDF
Our goal is to model the behavior of an ensemble of interacting neurons and astrocytes (the neural-glial mass). For this, a model describing N tripartite synapses is proposed. Each tripartite synapse consists of presynaptic and postsynaptic nerve terminals, as well as the synaptically associated astrocytic microdomain, and is described by a system of 13 stochastic differential equations. Then, by applying the dynamical mean field approximation (DMA) (Hasegawa, 2003a , 2003b ) the system of 13 N equations is reduced to 13(13 + 2) = 195 deterministic differential equations for the means and the second-order moments of local and global variables. Simulations are carried out for studying the response of the neural-glial mass to external inputs applied to either the presynaptic terminals or the astrocytes. Three cases were considered: the astrocytes influence only the presynaptic terminal, only the postsynaptic terminal, or both the presynaptic and postsynaptic terminals. As a result, a wide range of responses varying from singles spikes to train of spikes was evoked on presynaptic and postsynaptic terminals. The experimentally observed phenomenon of spontaneous activity in astrocytes was replicated on the neural-glial mass. The model predicts that astrocytes can have a strong and activity-dependent influence on synaptic transmission. Finally, simulations show that the dynamics of astrocytes influences the synchronization ratio between neurons, predicting a peak in the synchronization for specific values of the astrocytes’ parameters.
Journal Articles
Roberto C. Sotero, Nelson J. Trujillo-Barreto, Yasser Iturria-Medina, Felix Carbonell, Juan C. Jimenez
Publisher: Journals Gateway
Neural Computation (2007) 19 (2): 478–512.
Published: 01 February 2007
Abstract
View article
PDF
We study the generation of EEG rhythms by means of realistically coupled neural mass models. Previous neural mass models were used to model cortical voxels and the thalamus. Interactions between voxels of the same and other cortical areas and with the thalamus were taken into account. Voxels within the same cortical area were coupled (short-range connections) with both excitatory and inhibitory connections, while coupling between areas (long-range connections) was considered to be excitatory only. Short-range connection strengths were modeled by using a connectivity function depending on the distance between voxels. Coupling strength parameters between areas were defined from empirical anatomical data employing the information obtained from probabilistic paths, which were tracked by water diffusion imaging techniques and used to quantify white matter tracts in the brain. Each cortical voxel was then described by a set of 16 random differential equations, while the thalamus was described by a set of 12 random differential equations. Thus, for analyzing the neuronal dynamics emerging from the interaction of several areas, a large system of differential equations needs to be solved. The sparseness of the estimated anatomical connectivity matrix reduces the number of connection parameters substantially, making the solution of this system faster. Simulations of human brain rhythms were carried out in order to test the model. Physiologically plausible results were obtained based on this anatomically constrained neural mass model.