Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Rolf P. Würtz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (7): 1952–1989.
Published: 01 July 2009
FIGURES
| View All (18)
Abstract
View article
PDF
We present an object recognition system built on a combination of feature- and correspondence-based pattern recognizers. The feature-based part, called preselection network , is a single-layer feedforward network weighted with the amount of information contributed by each feature to the decision at hand. For processing arbitrary objects, we employ small, regular graphs whose nodes are attributed with Gabor amplitudes, termed parquet graphs . The preselection network can quickly rule out most irrelevant matches and leaves only the ambiguous cases, so-called model candidates, to be verified by a rudimentary version of elastic graph matching, a standard correspondence-based technique for face and object recognition. According to the model, graphs are constructed that describe the object in the input image well. We report the results of experiments on standard databases for object recognition. The method achieved high recognition rates on identity and pose. Unlike many other models, it can also cope with varying background, multiple objects, and partial occlusion.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (12): 2563–2575.
Published: 01 December 2004
Abstract
View article
PDF
We present an analysis of the representation of images as the magnitudes of their transform with complex-valued Gabor wavelets. Such a representation is a model for complex cells in the early stage of visual processing and of high technical usefulness for image understanding, because it makes the representation insensitive to small local shifts. We show that if the images are band limited and of zero mean, then reconstruction from the magnitudes is unique up to the sign for almost all images.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (8): 1865–1896.
Published: 01 August 2003
Abstract
View article
PDF
The Gestalt principle of collinearity (and curvilinearity) is widely regarded as being mediated by the long-range connection structure in primary visual cortex. We review the neurophysiological and psychophysical literature to argue that these connections are developed from visual experience after birth, relying on coherent object motion. We then present a neural network model that learns these connections in an unsupervised Hebbian fashion with input from real camera sequences. The model uses spatiotemporal retinal filtering, which is very sensitive to changes in the visual input. We show that it is crucial for successful learning to use the correlation of the transient responses instead of the sustained ones. As a consequence, learning works best with video sequences of moving objects. The model addresses a special case of the fundamental question of what represents the necessary a priori knowledge the brain is equipped with at birth so that the self-organized process of structuring by experience can be successful.