Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Rufin VanRullen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (5): 1075–1099.
Published: 15 April 2022
Abstract
View article
PDF
Visual understanding requires comprehending complex visual relations between objects within a scene. Here, we seek to characterize the computational demands for abstract visual reasoning. We do this by systematically assessing the ability of modern deep convolutional neural networks (CNNs) to learn to solve the synthetic visual reasoning test (SVRT) challenge, a collection of 23 visual reasoning problems. Our analysis reveals a novel taxonomy of visual reasoning tasks, which can be primarily explained by both the type of relations (same-different versus spatial-relation judgments) and the number of relations used to compose the underlying rules. Prior cognitive neuroscience work suggests that attention plays a key role in humans' visual reasoning ability. To test this hypothesis, we extended the CNNs with spatial and feature-based attention mechanisms. In a second series of experiments, we evaluated the ability of these attention networks to learn to solve the SVRT challenge and found the resulting architectures to be much more efficient at solving the hardest of these visual reasoning tasks. Most important, the corresponding improvements on individual tasks partially explained our novel taxonomy. Overall, this work provides a granular computational account of visual reasoning and yields testable neuroscience predictions regarding the differential need for feature-based versus spatial attention depending on the type of visual reasoning problem.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (4): 859–879.
Published: 01 April 2005
Abstract
View article
PDF
Spike timing-dependent plasticity (STDP) is a learning rule that modifies the strength of a neuron's synapses as a function of the precise temporal relations between input and output spikes. In many brains areas, temporal aspects of spike trains have been found to be highly reproducible. How will STDP affect a neuron's behavior when it is repeatedly presented with the same input spike pattern? We show in this theoretical study that repeated inputs systematically lead to a shaping of the neuron's selectivity, emphasizing its very first input spikes, while steadily decreasing the postsynaptic response latency. This was obtained under various conditions of background noise, and even under conditions where spiking latencies and firing rates, or synchrony, provided conflicting informations. The key role of first spikes demonstrated here provides further support for models using a single wave of spikes to implement rapid neural processing.