Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Rui Zhang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2024) 36 (5): 936–962.
Published: 23 April 2024
FIGURES
| View All (9)
Abstract
View article
PDF
Zero-shot learning (ZSL) refers to the design of predictive functions on new classes (unseen classes) of data that have never been seen during training. In a more practical scenario, generalized zero-shot learning (GZSL) requires predicting both seen and unseen classes accurately. In the absence of target samples, many GZSL models may overfit training data and are inclined to predict individuals as categories that have been seen in training. To alleviate this problem, we develop a parameter-wise adversarial training process that promotes robust recognition of seen classes while designing during the test a novel model perturbation mechanism to ensure sufficient sensitivity to unseen classes. Concretely, adversarial perturbation is conducted on the model to obtain instance-specific parameters so that predictions can be biased to unseen classes in the test. Meanwhile, the robust training encourages the model robustness, leading to nearly unaffected prediction for seen classes. Moreover, perturbations in the parameter space, computed from multiple individuals simultaneously, can be used to avoid the effect of perturbations that are too extreme and ruin the predictions. Comparison results on four benchmark ZSL data sets show the effective improvement that the proposed framework made on zero-shot methods with learned metrics.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (7): 1964–1985.
Published: 01 July 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Distant supervision, a widely applied approach in the field of relation extraction can automatically generate large amounts of labeled training corpus with minimal manual effort. However, the labeled training corpus may have many false-positive data, which would hurt the performance of relation extraction. Moreover, in traditional feature-based distant supervised approaches, extraction models adopt human design features with natural language processing. It may also cause poor performance. To address these two shortcomings, we propose a customized attention-based long short-term memory network. Our approach adopts word-level attention to achieve better data representation for relation extraction without manually designed features to perform distant supervision instead of fully supervised relation extraction, and it utilizes instance-level attention to tackle the problem of false-positive data. Experimental results demonstrate that our proposed approach is effective and achieves better performance than traditional methods.