Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Ryan C. Kelly
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (8): 2007–2032.
Published: 01 August 2012
FIGURES
| View All (8)
Abstract
View article
PDF
Several authors have previously discussed the use of log-linear models, often called maximum entropy models, for analyzing spike train data to detect synchrony. The usual log-linear modeling techniques, however, do not allow time-varying firing rates that typically appear in stimulus-driven (or action-driven) neurons, nor do they incorporate non-Poisson history effects or covariate effects. We generalize the usual approach, combining point-process regression models of individual neuron activity with log-linear models of multiway synchronous interaction. The methods are illustrated with results found in spike trains recorded simultaneously from primary visual cortex. We then assess the amount of data needed to reliably detect multiway spiking.