Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Ryo Karakida
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (8): 1463–1480.
Published: 12 July 2023
FIGURES
Abstract
View article
PDF
Hopfield networks and Boltzmann machines (BMs) are fundamental energy-based neural network models. Recent studies on modern Hopfield networks have broadened the class of energy functions and led to a unified perspective on general Hopfield networks, including an attention module. In this letter, we consider the BM counterparts of modern Hopfield networks using the associated energy functions and study their salient properties from a trainability perspective. In particular, the energy function corresponding to the attention module naturally introduces a novel BM, which we refer to as the attentional BM (AttnBM). We verify that AttnBM has a tractable likelihood function and gradient for certain special cases and is easy to train. Moreover, we reveal the hidden connections between AttnBM and some single-layer models, namely the gaussian–Bernoulli restricted BM and the denoising autoencoder with softmax units coming from denoising score matching. We also investigate BMs introduced by other energy functions and show that the energy function of dense associative memory models gives BMs belonging to exponential family harmoniums.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (8): 2274–2307.
Published: 26 July 2021
Abstract
View article
PDF
The Fisher information matrix (FIM) plays an essential role in statistics and machine learning as a Riemannian metric tensor or a component of the Hessian matrix of loss functions. Focusing on the FIM and its variants in deep neural networks (DNNs), we reveal their characteristic scale dependence on the network width, depth, and sample size when the network has random weights and is sufficiently wide. This study covers two widely used FIMs for regression with linear output and for classification with softmax output. Both FIMs asymptotically show pathological eigenvalue spectra in the sense that a small number of eigenvalues become large outliers depending on the width or sample size, while the others are much smaller. It implies that the local shape of the parameter space or loss landscape is very sharp in a few specific directions while almost flat in the other directions. In particular, the softmax output disperses the outliers and makes a tail of the eigenvalue density spread from the bulk. We also show that pathological spectra appear in other variants of FIMs: one is the neural tangent kernel; another is a metric for the input signal and feature space that arises from feedforward signal propagation. Thus, we provide a unified perspective on the FIM and its variants that will lead to more quantitative understanding of learning in large-scale DNNs.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (5): 827–848.
Published: 01 May 2019
FIGURES
| View All (6)
Abstract
View article
PDF
We propose a new divergence on the manifold of probability distributions, building on the entropic regularization of optimal transportation problems. As Cuturi ( 2013 ) showed, regularizing the optimal transport problem with an entropic term is known to bring several computational benefits. However, because of that regularization, the resulting approximation of the optimal transport cost does not define a proper distance or divergence between probability distributions. We recently tried to introduce a family of divergences connecting the Wasserstein distance and the Kullback-Leibler divergence from an information geometry point of view (see Amari, Karakida, & Oizumi, 2018 ). However, that proposal was not able to retain key intuitive aspects of the Wasserstein geometry, such as translation invariance, which plays a key role when used in the more general problem of computing optimal transport barycenters. The divergence we propose in this work is able to retain such properties and admits an intuitive interpretation.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (1): 1–33.
Published: 01 January 2018
FIGURES
| View All (15)
Abstract
View article
PDF
The dynamics of supervised learning play a main role in deep learning, which takes place in the parameter space of a multilayer perceptron (MLP). We review the history of supervised stochastic gradient learning, focusing on its singular structure and natural gradient. The parameter space includes singular regions in which parameters are not identifiable. One of our results is a full exploration of the dynamical behaviors of stochastic gradient learning in an elementary singular network. The bad news is its pathological nature, in which part of the singular region becomes an attractor and another part a repulser at the same time, forming a Milnor attractor. A learning trajectory is attracted by the attractor region, staying in it for a long time, before it escapes the singular region through the repulser region. This is typical of plateau phenomena in learning. We demonstrate the strange topology of a singular region by introducing blow-down coordinates, which are useful for analyzing the natural gradient dynamics. We confirm that the natural gradient dynamics are free of critical slowdown. The second main result is the good news: the interactions of elementary singular networks eliminate the attractor part and the Milnor-type attractors disappear. This explains why large-scale networks do not suffer from serious critical slowdowns due to singularities. We finally show that the unit-wise natural gradient is effective for learning in spite of its low computational cost.