Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Saeed Saremi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (7): 1329–1339.
Published: 01 July 2014
FIGURES
| View All (18)
Abstract
View article
PDF
Data sets with high dimensionality such as natural images, speech, and text have been analyzed with methods from condensed matter physics. Here we compare recent approaches taken to relate the scale invariance of natural images to critical phenomena. We also examine the method of studying high-dimensional data through specific heat curves by applying the analysis to noncritical systems: 1D samples taken from natural images and 2D binary pink noise. Through these examples, we concluded that due to small sample sizes, specific heat is not a reliable measure for gauging whether high-dimensional data are critical. We argue that identifying order parameters and universality classes is a more reliable way to identify criticality in high-dimensional data.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (4): 922–939.
Published: 01 April 2013
FIGURES
| View All (34)
Abstract
View article
PDF
The analysis of natural images with independent component analysis (ICA) yields localized bandpass Gabor-type filters similar to receptive fields of simple cells in visual cortex. We applied ICA on a subset of patches called position-centered patches, selected for forming a translation-invariant representation of small patches. The resulting filters were qualitatively different in two respects. One novel feature was the emergence of filters we call double-Gabor filters. In contrast to Gabor functions that are modulated in one direction, double-Gabor filters are sinusoidally modulated in two orthogonal directions. In addition the filters were more extended in space and frequency compared to standard ICA filters and better matched the distribution in experimental recordings from neurons in primary visual cortex. We further found a dual role for double-Gabor filters as edge and texture detectors, which could have engineering applications.