Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Sama Daryanavard
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (11): 2122–2144.
Published: 01 November 2020
Abstract
View article
PDF
A reflex is a simple closed-loop control approach that tries to minimize an error but fails to do so because it will always react too late. An adaptive algorithm can use this error to learn a forward model with the help of predictive cues. For example, a driver learns to improve steering by looking ahead to avoid steering in the last minute. In order to process complex cues such as the road ahead, deep learning is a natural choice. However, this is usually achieved only indirectly by employing deep reinforcement learning having a discrete state space. Here, we show how this can be directly achieved by embedding deep learning into a closed-loop system and preserving its continuous processing. We show in z-space specifically how error backpropagation can be achieved and in general how gradient-based approaches can be analyzed in such closed-loop scenarios. The performance of this learning paradigm is demonstrated using a line follower in simulation and on a real robot that shows very fast and continuous learning.