Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Samuel Kaski
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (1): 217–239.
Published: 01 January 2002
Abstract
View article
PDF
We study the problem of learning groups or categories that are local in the continuous primary space but homogeneous by the distributions of an associated auxiliary random variable over a discrete auxiliary space. Assuming that variation in the auxiliary space is meaningful, categories will emphasize similarly meaningful aspects of the primary space. From a data set consisting of pairs of primary and auxiliary items, the categories are learned by minimizing a Kullback-Leibler divergence-based distortion between (implicitly estimated) distributions of the auxiliary data, conditioned on the primary data. Still, the categories are defined in terms of the primary space. An online algorithm resembling the traditional Hebb-type competitive learning is introduced for learning the categories. Minimizing the distortion criterion turns out to be equivalent to maximizing the mutual information between the categories and the auxiliary data. In addition, connections to density estimation and to the distributional clustering paradigm are outlined. The method is demonstrated by clustering yeast gene expression data from DNA chips, with biological knowledge about the functional classes of the genes as the auxiliary data.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (6): 1321–1344.
Published: 15 August 1997
Abstract
View article
PDF
The adaptive-subspace self-organizing map (ASSOM) is a modular neural network architecture, the modules of which learn to identify input patterns subject to some simple transformations. The learning process is unsupervised, competitive, and related to that of the traditional SOM (self-organizing map). Each neural module becomes adaptively specific to some restricted class of transformations, and modules close to each other in the network become tuned to similar features in an orderly fashion. If different transformations exist in the input signals, different subsets of ASSOM units become tuned to these transformation classes.